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Abstract. New Monte Carlo (MC) results on the interfacial adsorption in the vicinity of 
the tricritical point of the two-dimensional Blume-Capel model are reported. The net 
adsorption, WO, is found to diverge as WO - I;" with w = 0.44* 0.02 as the tricritical point 
is approached along a path asymptotically not parallel to the phase boundary. This 
behaviour as well as previous MC results on the interfacial adsorption at the critical line 
and the first-order transition of the model are explained using analytic and scaling argu- 
ments. In addition, finite size effects (If the first-order transition are analysed, and it is 
shown that the critical adsorption scales as LA f( Lll/ L:) where L ,  and L ,  are the lengths 
of the system in the directions parallel and perpendicular to the interface. The scaling 
function f is evaluated by performing MC simulations on systems with various length to 
width ratios. 

1. Introduction 

Most of the studies on interfaces have been confined to two phase systems. A more 
complex situation may be encountered at interfaces between two phases ( a ,  p )  in the 
presence of one or more additional phases ( y, . . .). For example, in a two-component 
fluid system in equilibrium with its vapour phase a thin film of the heavier fluid may 
intervene and 'wet' the interface between the lighter fluid and the vapour (Moldover 
and Cahn 1980). This wetting effect which is caused by an interplay of interface 
tensions, repulsion between interfaces, and the gravitational field has been described 
within the classical, phenomenological framework (Cahn 1977, Widom 1978, Teubner 
1983). 

A similar effect, 'interfacial adsorption' (Selke and Huse 1983), has recently been 
found (Selke and Pesch 1982) in multi-state models, i.e. lattice models where the 
variables, Si, on lattice sites i, can have at least three values, S,  = c y ,  p, y ,  . . . . In 
particular, two-dimensional models which have been studied include the q-state Potts 
models, q = 3,4 , .  . . (Selke and Pesch 1982, Selke and Huse 1983, Selke 1984b), the 
three-state chiral clock model (Huse and Fisher 1982, 1984, Huse et al 1983, Selke 
1984a, b), the Blume-Cape1 model (Selke and Yeomans 1983) as well as lattice gas 
models for adsorbates like H/Fe( 110) and O/Pd( 110) (Sega et a1 1984, Selke 1984b). 
In all cases an interface is introduced by fixing variables on opposite boundaries in 
two different states, say a and p. At the interface an excess of non-boundary states, 
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7,. . . , occurs, either in the form of droplets, e.g., in the Potts models, or in a layer-like 
fashion. To study this effect quantitatively the ‘net adsorption of non-boundary states 
at the interface’, W, is defined by comparing systems with and without interfaces. The 
adsorption is found to exhibit interesting new critical behaviour as one approaches 
either the bulk transition temperature, T,, or in some cases a distinct ‘wetting tem- 
perature’ below T, (for a review see Selke 1984b). 

In this article the previous Monte Carlo (MC) work of Selke and Yeomans (1983) 
on the interfacial adsorption, WO, in the two-dimensional Blume-Cape1 ( BC) model is 
extended. The model is known to display a second-order transition, a tricritical point, 
and a first-order transition. Selke and Yeomans (1983) found different types of critical 
behaviour for WO at the various transitions. We extend the previous MC calculations 
in two ways: the vicinity of the tricritical point is explored in much more detail, because 
crossover effects may have been overlooked previously. Indeed, the exponent for the 
temperature dependence of WO on approaching tricriticality is found to be larger than 
reported previously. In addition, finite size effects at the first-order transition are 
studied by performing MC calculations on systems with various length to width ratios. 

The outline of the article is as follows: in § 2 the previous MC findings (Selke and 
Yeomans 1983) and our new results in the vicinity of the tricritical point are described. 
As shown in § 3, all these results can be explained using scaling arguments as well as 
analytic approaches employing, for example, the collective coordinates method (Diehl 
et a1 1980, Lipowsky et al 1983). In addition, the finite size scaling behaviour at the 
first-order transition is discussed in that section. The critical adsorption is found to 
scale as L,f(LII/L:) where LIl and L,  are the lengths of the system parallel and 
perpendicular to the interface. A brief summary and an outlook to possible experi- 
mental applications conclude the article. 

2. Monte Carlo results 

The Blume-Cape1 model (Cape1 1966, Blume 1966) is described by the spin-1 Ising 
Hamiltonian 

x= - J SiSj + D Sf s, = -l,O, 1 
( b )  L 

where ( i j )  denotes summation over nearest neighbours on a square lattice of size L X L, 
and J, D > 0. The model is known to display a second-order transition for 0 S D/ J S 
( D /  J ) , ,  a tricritical point at ( D /  J ) ,  (close to 1.95; the exact position is open to question, 
see below) and a first-order transition in the range ( D / J ) , < D / J < 2 .  The phase 
diagram, based on MC results for finite lattices, but extrapolated to L-,  00, is depicted 
in figure 1 (see Selke and Yeomans 1983). 

To introduce an interface, the spins on two opposite boundaries were fixed in the 
two different non-zero states *l. Two types of boundary conditions were considered 
in the lateral direction. Most data were taken with fixed spin boundary conditions: 
on one half of the systems the boundary spins were fixed to be +1, on the other -1. 
This pins the ends of the interface each at half way across the system (see, e.g., figure 
1 of Selke and Yeomans 1983 or Selke 1984b). A few data were taken with periodic 
boundary conditions in the lateral direction. However, since the behaviour of the 
interfacial adsorption was found to be essentially the same in both cases, the results 
discussed here are all only for the fixed spin case. 
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Figure 1. Phase diagram of the two-dimensional Blume-Cape1 model. The crossover region 
of the tricritical point below the phase boundary is sketched. 

By examining typical equilibrium MC configurations it is seen that an excess of the 
non-boundary state, Si = 0, is generated at the interface (see, e.g. figure 1 of Selke and 
Yeomans 1983). This phenomenon is described quantitatively by the net adsorption 
per unit length of the interface (Selke and Yeomans 1983) 

where the angular brackets denote thermal averages and the subscripts 1 : -1 and 1 : 1 
refer to systems with and without interfaces, respectively. The (possibly) critical 
behaviour of WO can be characterised by two critical exponents, w and a:  

WO( t , ,  L = CO) - ti'" for small t ,  (3) 

and 

Wo(T= T,, L ) - L "  for large L (4) 

where t ,  = ( T ,  - T ) /  T,, and T, is the bulk transition temperature. Instead of WO( T = 
T,, L ) ,  one may also consider the maximum adsorption at fixed D/J,  WaX(L), to 
define a. 

In a previous Monte Carlo study (Selke and Yeomans 1983) it has been shown 
that WO does not diverge at the critical line, D /  J < ( D /  J ) t .  At the first-order line w 
was estimated to be w = 0.33 * 0.03. Indeed, as is discussed below, o = f is expected. 
An exponent a = 0.7 * 0.05 has been found at the first-order line, but it will be shown 
in the next section that this is just an apparent exponent. At the tricritical point, WO 
appeared to diverge weakly, possibly in a logarithmic fashion (Selke and Yeomans 
1983). However, these data were taken at constant ( D I J ) ,  i.e. along a path almost 
parallel to the transition line, see figure 1. This may have lead to quite complicated 
crossover phenomena, and the data have to be interpreted with great care. In order 
to avoid seeing such phenomena one must approach the tricritical point along one of 
the two relevant scaling axes, t = 0 or g = 0 (e.g. Fisher 1974), see figure 1. The t-axis, 
on which g = 0, is tangent to the transition line. The orientation of the g-axis is not 
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known, but one would expect it to be approximately perpendicular to the t-axis. Thus, 
in order to avoid possible misleading crossover effects we have chosen to approach 
the tricritical point along a line perpendicular to the phase boundary in the belief that 
t / g  is small on that line. Indeed, MC runs along that path indicate a divergence of 
the net adsorption, WO, as depicted in figure 2. Typically we took 2-3 X lo4 Monte 

5.01 I I I I 1 1 1 1 1  I l l /  

1 3.01 20 '. 
*P,pwj ' x w = 0 4 4 t 0 0 2  

3.01 * P\ 2 i 

2ot '. 
\" 1 
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(T,-T)/T,  

Figure 2. Log-log plot of the interfacial adsorption, WO, and the order parameter, M, 
against temperature on approaching the tricritical point along a path perpendicular to the 
phase boundary. The crosses denote L = 40 and the circles denote L = 60. 

Carlo steps per site (Mcs/site). The sizes of the systems were 40 x 40 and 60 x 60 (only 
a few points are shown for the latter case). In the range 2 x 10-2s  t c s  3 x lo-' we 
obtain, using linear regression, w = 0.44kO.02 (note that here t,- g )  where we took 
( D / J ) , =  1.945 and k B T t / J  = 0.65, see below. MC runs along slightly different paths, 
e.g. assuming ( D I J ) ,  to be 1.931 (Selke and Yeomans 1983), gave estimates for w 
within the error bars quoted above, reflecting the existence of a broad crossover region. 
To check the reliability of the estimate we determined the tricritical exponent, p, of 
the order parameter, M - X i  ( S , ) ,  from the same MC runs. For ( D I J ) ,  = 1.945 we found 
p = 0.04 f 0.0 1, see figure 2, in very good agreement with the exact value p = (Nienhuis 
1982, den Nijs 1983). Assuming ( D I J ) ,  to be 1.93 1 the effective exponent p, determined 
in the same range of temperatures as w, becomes somewhat larger, p == 0.06. This 
suggests that the tricritical point is located closer to ( D / J )  = 1.945 than 1.931. Addi- 
tional evidence for this position of the tricritical point stems from finite size analyses, 
as shown in figure 3. There we monitored the maximum adsorption, W r x (  WO( T,) at 
the first-order line) at fixed values of D/ J as a function of the linear dimension L. 
Log-log plots in the vicinity of the tricritical point showed a pronounced curvature. 
We therefore determined effective exponents aef i (L , ,  L2, L,) from fitting a slope to the 
data for systems of sizes L ,  x L , ,  L2 x L2, and L3 x L, with L, > L2> L , .  Of course, for 
large values of L this quantity should approach the exponent of equation (4). The 
results are displayed in figure 3, taking 2 x lo4 to 105~cs /s i te ,  the larger number for 
the larger systems, especially L = 100. They are consistent with a vanishing exponent, 
a, at the critical line and a value of a=0.7*0.05 at the first-order line (see below). 
The change between these two types of behaviour occurs at D/ J = 1.945 * 0.01, presum- 
ably at the tricritical point. However, one must be cautious here because the expected 
value of a =$  at the tricritical point is not seen, as discussed in 0 3. 
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Figure 3. Finite size behaviour of the apparent exponent a,, (see text) at various values 
of D / J .  The open symbols refer to the maximum adsorption, vax, while the shaded 
symbols denote Monte Carlo results taken at the bulk critical temperature. The circles 
denote L = I O ,  20, 40; the squares denote L = 20, 40, 60 and the triangles denote L = 40, 
60, 100. 

3. Analytic and scaling arguments 

In order to understand the MC results, it is useful to express WO as a derivative of the 
interface tension U. Noting that (i30,sr) = 1 - ( S f ) ,  WO may be rewritten as 

Denoting the total free energy for 1 : 1 ( 1 : - 1 ) boundary conditions by Fl : ( Fl : WO 
can then be expressed in terms of the interface tension of the system U =  

( 1/ L)(  Fl : 1 - Fl : - 1  1 as 

wo= p- 'au /aD ( 6 )  

where p = l/kBT. 
For the spin-4 Ising model it is known that U - t ,  for t ,  = ( T, - T ) /  Tc+ O+ at the 

critical point (Onsager 1944). The BC model belongs to the same universality class for 
D / J  < ( D / J ) , ,  so that we expect U -  t , ,  where t ,  is a measure of distance from the 
critical curve of this model. Since D is a non-ordering field (Riedel 1972) one has 

W o - d u / a t , -  constant (7) 
on the critical line, in agreement with the MC results. 

At the tricritical point there are two relevant scaling fields, t and g ,  as discussed 
above. When t --f 0 with g = 0, the tricritical point is approached tangentially to the 
phase boundary, whereas an increase in g results in departure from the tricritical point 
and the phase boundary. Near the tricritical point the bulk free energy density has 
the scaling form (Fisher 1974, Lawrie and Sarbach 1984) 

F =  g ' - " Q ( t / g + )  (8) 
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where a = 8 and 4 = $ are the expected exact exponents in two dimensions (Nienhuis 
1982). Similarly, the interface tension (+ should scale as (Widom 1974) 

a=g%t/g+)  (9) 

where p = 2 - a - v = ( d  - 1)  v = $. D has a projection on both g and t so that using 
equation (6), the leading singularity in WO is found to be 

WO = g-4/9R( t/g"/'). (10) 

The exponent $ thus describes the divergence of WO for paths asymptotically not parallel 
to the transition line. For paths asymptotically parallel to the phase boundary (e.g. 
along the critical line) WO- t - ' .  Because of the steepness of the phase boundary at 
the tricritical point, see figure 1, MC data taken for fixed value of D / J  may well be in 
the crossover region of large (tlg"'). Furthermore, the interpretation of the data in 
this case is very sensitive to the exact value of (DIJ ) , .  On the other hand, for paths 
more or less perpendicular to the phase boundary, the scaling region is very wide and 
the scaling behaviour should be rather insensitive to the exact value taken for ( D / J ) , .  
Indeed, this is confirmed by the MC data reported above. The exponent w = 0.44 * 0.02 
is obviously in agreement with the expected exact result. 

The finite-size behaviour observed at the tricritical point, on the other hand, does 
not give an apparent exponent consistent with the exact exponents. Since the correlation 
length at the tricritical point scales as 

( 1 1 )  & = g - 5 / 9 -  =( tls"l'), 
finite size scaling implies WTax - L4l5 at the tricritical point. In figure 3 it is clear that 
we do not observe this behaviour. Presumably much larger systems sizes as well as a 
precise knowledge of the tricritical coordinates would be necessary to observe the 
expected a =$ (A MC study of Landau and Swendsen suggests ( D I J ) ,  to be close 
to 1.96.) A careful MC study at the tricritical point of hard squares with diagonal 
interactions (Huse 1982, Baxter and Pearce 1983), whose position is exactly known, 
might clarify this problem. 

At the critical and tricritical points, the singularities in the adsorption, WO, are 
induced by bulk critical fluctuations. On the other hand, at the first-order transition 
there are no bulk critical fluctuations and the divergence of WO arises from an interface 
delocalisation transition (Abraham and Smith 1982, Kroll and Lipowsky 1983). Near 
the first-order transition, the interface between the '+l '  rich or [ +] phase and the '-1' 
rich or [-I phase may be viewed as having a compound structure, consisting of a 
microscopic layer of '0' rich or [ O ]  phase bounded above and below by an interface. 
The widths of the basic [ + / O ]  and [0/ -1 interfaces do not diverge at the transition; 
the divergence of the width of the [ +/ -1 interface is simply an unbinding of the two 
basic interfaces. This transition is most easily studied using a model in which the 
dynamical variables are simply the coordinates of the [ + / O ]  and [0/ -1 interfaces, 
y+(x) and y-(x), respectively, where the x-axis is chosen parallel to the interface and 
y+(x) > y-(x). It is straightforward to derive the Lagrangian of this model using the 
collective coordinates method described elsewhere (Diehl et a1 1980, Lipowsky et  a1 
1983). At sufficiently large length scales the free energy functional is well approximated 
by 



Interfacial adsorption in the 20 BC model 3025 

where V( w )  - e-”’“ +(fo-f+) w. The bulk free energy densities of the [O] and [+] 
phases, fo and f+, respectively, are equal at the transition. The mean field interface 
tension is IT,, and 5, is the mean field bulk correlation length at the transition. To 
simplify this model, make the change of variables y(x)  =&y+(x)  +y-(x)) and z(x)  = 
i(y+(x)-y-(x)).  The fluctuations in y ( x )  may then be integrated out (they do not 
contribute any singularities to WO) leaving 

F{z(x)} = dx{c+,(dz/dx)2 + V(2z)). I 
This Lagrangian has been previously considered; it also arises in the problem of 
interfacial unbinding from a rigid free surface (Lipowsky et a1 1983). The adsorption 
WO is simply proportional to the average thickness of the [O] phase layer (2z). In two 
dimensions we then expect (Lipowsky et a1 1983) 

WO- t,”3 (14) 

where t ,  - ( T, - T )  - (fo -f+). This critical exponent, w = $, which is certainly con- 
sistent with the MC data (Selke and Yeomans 1983) was originally found in a lattice 
model with interface unbinding (Abraham and Smith 1982), but should hold quite 
generally at first-order transitions in two-dimensional systems (Kroll and Lipowsky 
1983, Fisher 1984). 

It should be noted that there is an additional diverging length scale at this wetting 
transition, namely til, the longitudinal correlation length, describing composition corre- 
lations parallel to the interface. tIl is found to diverge with the exponent vll = 2 0  = 3 
(Abraham and Smith 1982, Huse and Fisher 1982, Lipowsky et al 1983). 

The problem of analysing finite size effects at the first-order transition is complicated 
by the fact that there are several diverging lengths in the problem. Let LIl denote the 
length of the system in the direction parallel to the interface and L,  the length in the 
perpendicular direction. As t ,  + 0, both WO - and - diverge. The finite 
size of the system plays a role when either WO - L,  and/or 511 - LII. Since vll = 2 0  we 
therefore expect WO( t ,  = 0) - Li’2 for x = LIl/  L: + 0 and WO( t ,  = 0 )  - L,  for x + 03. This 
motivates the scaling ansatz 

W o ( t c = O )  = L,f(LI , /L3 (15) 

where f ( x )  + XI’’ in the limit x + 0 and f (x)  + constant for x + 03. The scaling function 
can be evaluated by performing MC simulations on systems with various length to 
width ratios. This was done at T, for D/ J = 1.96 and 1.98 ( T, was obtained considering 
systems without an interface with full periodic boundary conditions). Some results 
are shown in figure 4 where it may be seen that the data fall reasonably well on one 
curve. In particular, in the range 10-3d x G  IO-’ we findf(x) -xi/’, in agreement with 
the above argument. For LII = L,  = L and 10 S L S 80 all data can be fitted relatively 
well by a power law f ( ~ ) - x ” ~  (implying a ,~=0 .7  (Selke and Yeomans 1983)). 
However, because these data lie in a region of intermediate values of x, this is only 
an apparent exponent. 

One problem with examining in detail the finite size scaling behaviour at a particular 
D/  J and T (  = T,) is that one cannot be certain of T, and can get spurious results if 
one’s estimate of T, is incorrect. Another measure for testing finite size scaling at the 
first-order transition is ,Fax which does not rely on any knowledge of T,. While there 
should be little boundary-condition dependent shift in the effective T, in the system 
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Figure 4. Interfacial adsorption at the bulk transition temperature of the first-order transition 
( D / J  = 1.96, k,T/  J = 0.6275). The Monte Carlo data for various length to width ratios 
( L,) (0, L, = L,, ; X ,  L, < LII ; U, L, > L,,) fall on one scaling curve, see equation ( I  5). 

with (1 : - 1)  boundary conditions, for the ( 1  : 1) system the first-order melting should 
be delayed by an amount proportional to L-' due to the need to produce two new 
interfaces (Fisher and Berker 1982, Lipowsky and Gompper 1984). There should thus 
be a temperature range of order L-' in which the ( 1  : 1)  system is fully ordered (no 
[O] phase present) but the two interfaces in the (1 : - 1) system have fully unbound. 
Thus we may postulate 

wrax = L J ( L , ~ /  L:) (16) 

where we expect Wrax-  L,. This should be more or less independent of the system 
shape L I I / L : .  Thus we expect f(x)-constant, so that for L x  L systems 

wrax - L. (17) 

However, because of pronounced metastability effects at the first-order transition it is 
very difficult to determine Wrax reliably, and we did not perform a detailed MC analysis. 
Nevertheless, at D/  J = 1.98 we did find for large L x L systems, 40 G L s 100, an almost 
linear increase of WO with L in a small range of temperatures above T,. 

4. Summary 

In this paper we have extended and refined previous (Selke and Yeomans 1983) Monte 
Carlo work on interfacial adsorption in the two-dimensional Blume-Capel model. In 
particular, the net adsorption, WO, is found to diverge as WO - t i"  with w = 0.44 * 0.02 
as the tricritical point is approached along a path asymptotically not parallel to the 
phase boundary. This behaviour is explained using a scaling argument which leads 
to w =$. The non-critical behaviour at the continuous transition is also explained by 
a scaling argument. Using the collective coordinates method the exponent which 
describes the temperature dependence of WO as one approaches the jirst-order transition 
is expected to be w = f, in excellent agreement with the previous (Selke and Yeomans) 
Monte Carlo result. By performing new MC calculations on systems with various length 
to width ratios we find that the critical adsorption at the first-order transition scales 
as L , f ( L l , / L : ) ,  where LII and L,  are the lengths of the systems parallel and perpen- 
dicular to the interface. 
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It is hoped that the results may provide a framework for understanding experi- 
mentally observable two-dimensional interface adsorption phenomena which are 
expected to occur, e.g., at domain boundaries in adsorbed monolayers. Related work 
is in progress (Selke 1984b, Sega et a1 1984). 
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